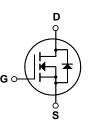
FAIRCHILD

SEMICONDUCTOR

FQT7N10L **100V LOGIC N-Channel MOSFET**


General Description


These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for low voltage applications such as high efficiency switching DC/DC converters, and DC motor control.

Features

- + 1.7A, 100V, $R_{DS(on)}$ = 0.35 Ω @V_{GS} = 10 V + Low gate charge (typical 4.6 nC)
- Low Crss (typical 12 pF)
- · Fast switching
- Improved dv/dt capability
- · Low level gate drive requirments allowing direct operation from logic drives

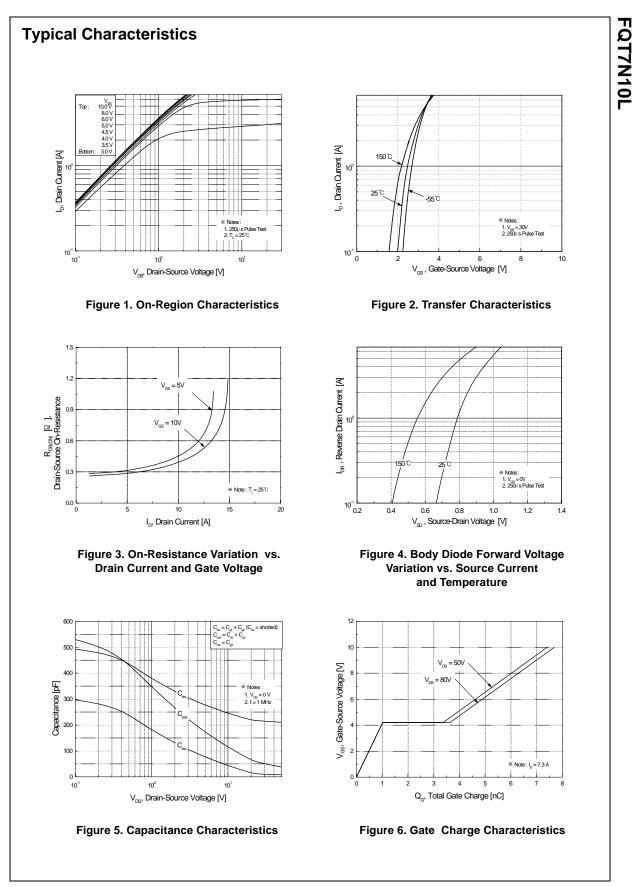
Absolute Maximum Ratings T_C = 25°C unless otherwise noted

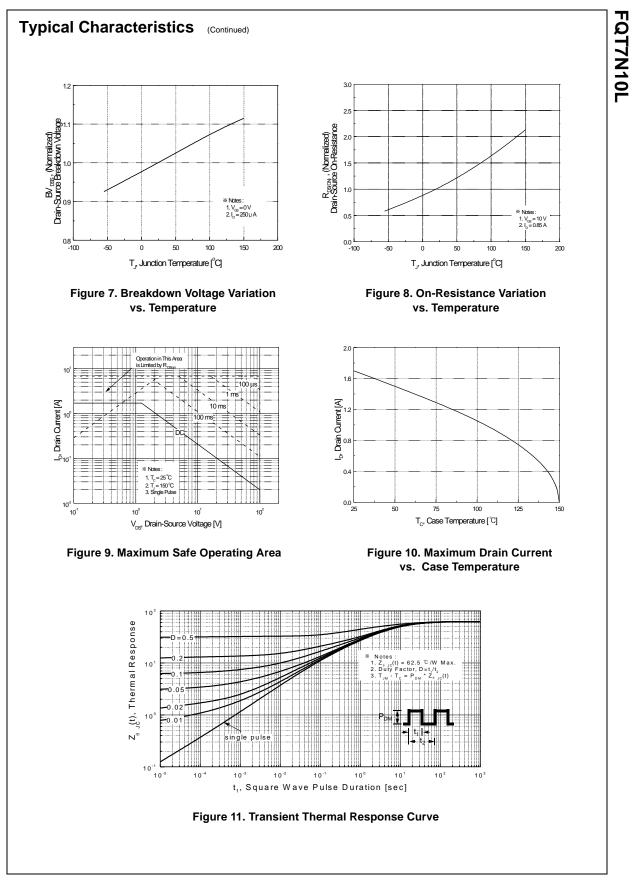
Symbol	Parameter		FQT7N10L	Units
V _{DSS}	Drain-Source Voltage		100	V
I _D	Drain Current - Continuous ($T_C = 25^\circ$	°C)	1.7	A
	- Continuous (T _C = 70°	°C)	1.36	A
I _{DM}	Drain Current - Pulsed	(Note 1)	6.8	A
V _{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	50	mJ
I _{AR}	Avalanche Current	(Note 1)	1.7	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	0.2	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	6.0	V/ns
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		2.0	W
	- Derate above 25°C		0.016	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

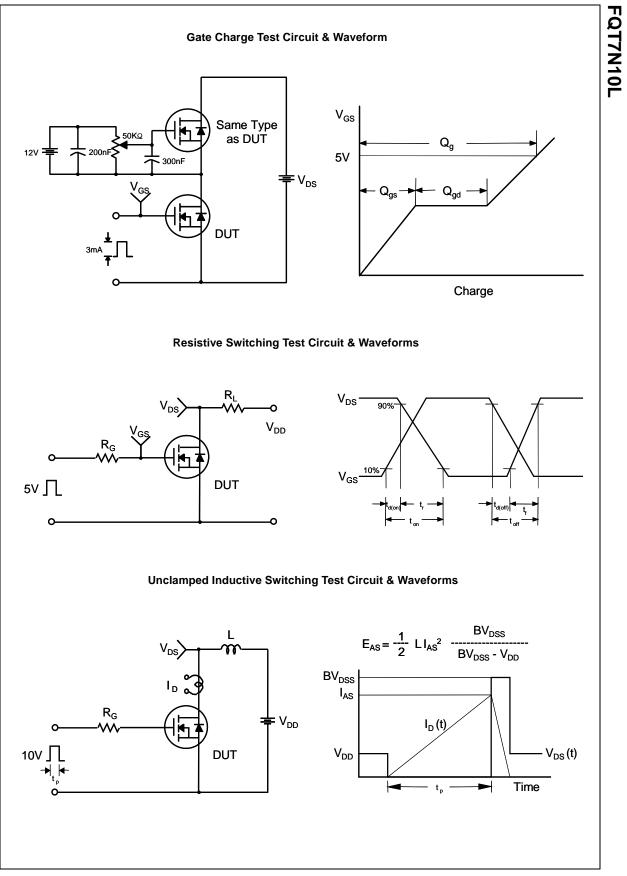
Thermal Characteristics

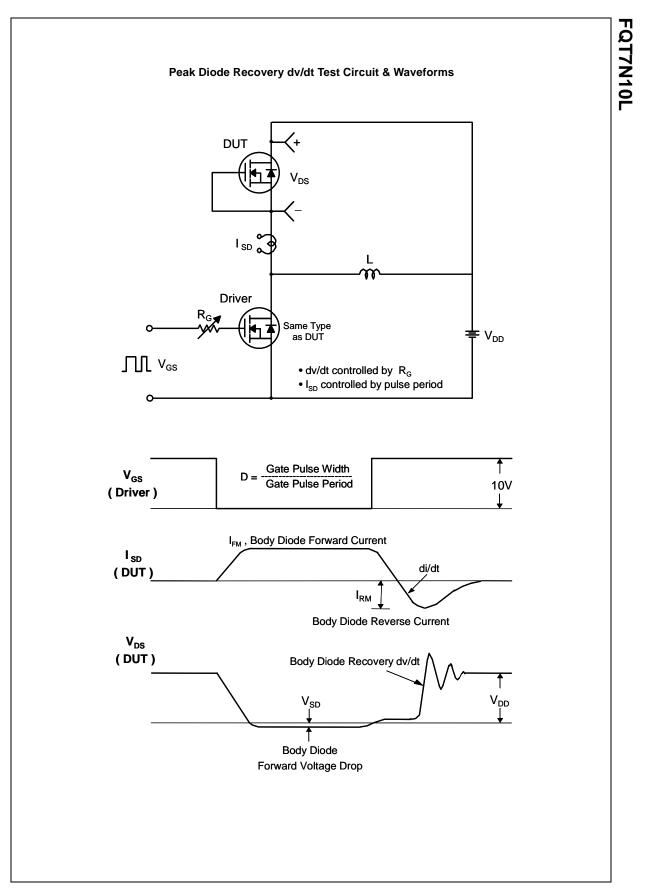
Symbol	Parameter	Тур	Max	Units
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient *		62.5	°C/W

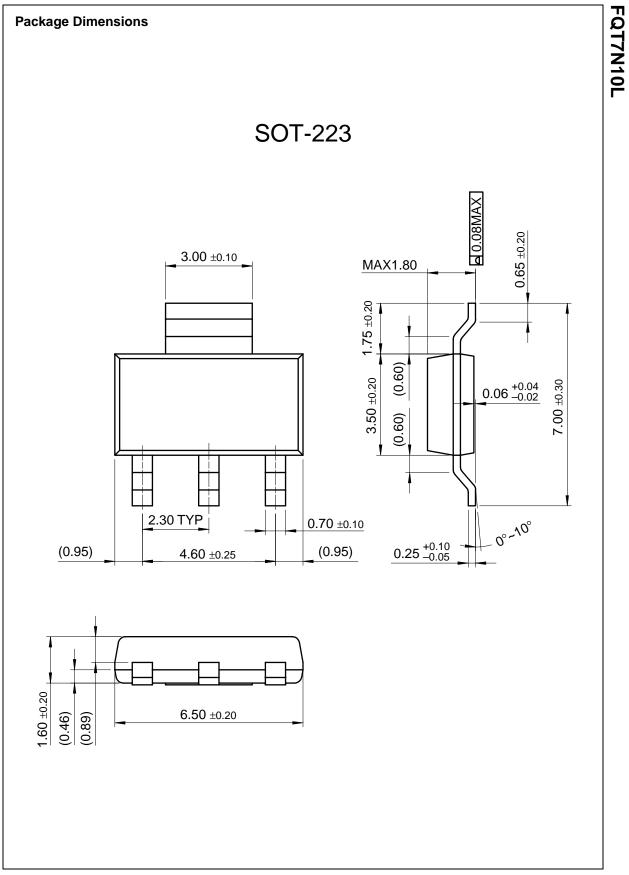
FQT7N10L


May 2001


FΤ


Symbol	Parameter	Test Conditions	6	Min	Тур	Max	Units
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_{D} = 250 \mu A$		100			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu$ A, Referenced to 25°C			0.1		V/°C
DSS		V _{DS} = 100 V, V _{GS} = 0 V				1	μA
	Zero Gate Voltage Drain Current	V _{DS} = 80 V, T _C = 125°C				10	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
On Cha	racteristics						
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		1.0		2.0	V
R _{DS(on)}	Static Drain-Source	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 0.85 \text{ A}$			0.275	0.35	-
-DS(01)	On-Resistance	V _{GS} = 5 V, I _D = 0.85 A			0.300	0.38	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 0.85 \text{ A}$	(Note 4)		2.75		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1.0 MHz			220 55 12	290 72 15	pF pF pF
Switchi	ng Characteristics						
t _{d(on)}	Turn-On Delay Time				9	30	ns
t _r	Turn-On Rise Time	$V_{DD} = 50 \text{ V}, \text{ I}_{D} = 7.3 \text{ A},$ R _G = 25 Ω			100	210	ns
t _{d(off)}	Turn-Off Delay Time	NG - 23 32			17	45	ns
t _f	Turn-Off Fall Time	-	(Note 4, 5)		50	110	ns
Qg	Total Gate Charge	V _{DS} = 80 V, I _D = 7.3 A,			4.6	6.0	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 5 V$			1.0		nC
Q _{gd}	Gate-Drain Charge		(Note 4, 5)		2.6		nC
Drain-S	ource Diode Characteristics ar	nd Maximum Rating	S				
s	Maximum Continuous Drain-Source Diode Forward Current					1.7	Α
sм	Maximum Pulsed Drain-Source Diode F	um Pulsed Drain-Source Diode Forward Current				6.8	A
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 1.7 A$				1.5	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0 V, I_{S} = 7.3 A,$			70		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/µs	(Note 4)		140		nC


3. I_{SD} \leq 7.3A, di/dt \leq 300A/µs, V_{DD} \leq BV_{DSS} Starting T_J = 25°C 4. Pulse Test : Pulse width \leq 300µs, Duty cycle \leq 2% 5. Essentially independent of operating temperature


FQT7N10L

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx TM Bottomless TM CoolFET TM CROSSVOLT TM DenseTrench TM DOME TM EcoSPARK TM E^2 CMOS TM EnSigna TM FACT TM	FAST [®] FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MICROWIRE™	OPTOPLANAR [™] PACMAN [™] POP [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] SLIENT SWITCHER [®] SMART START [™]	SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] UHC [™] UHC [™] UltraFET [®] VCX [™]
FACT™ FACT Quiet Series™	MICROWIRE™ OPTOLOGIC™	SMART START™ Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Fairchild Semiconductor		-ľ	Parametric Cross Reference
find products	Home >> Find products >>	snace_	
Products groups Analog and Mixed Signal	FQT7N10L 100V N-Channel Logic Level QFET	Datasheet	Related Links Request samples
Discrete Interface Logic	Contents <u>General description</u> <u>Features</u> <u>Product</u> <u>status/pricing/packaging</u> <u>Models</u>	Download this datasheet	Dotted line How to order products Dotted line Product Change Notices
Microcontrollers Non-Volatile Memory	General description	PDF e-mail this datas	(PCNs) Dotted line Support
Optoelectronics Markets and applications	These N-Channel enhancement mode power	E-	Distributor and field sales representatives
New products Product selection and	field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.	This page Print version	Quality and reliability Dotted line Design tools
parametric search <u>Cross-reference</u> <u>search</u> technical information	This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche		
buy products technical support	and commutation mode. These devices are well suited for low voltage applications such as high efficiency switching DC/DC converters, and		
my Fairchild	DC motor control.	-	
company	back to top		

Features

- 1.7A, 100V
 - $R_{DS(on)} = 0.35\Omega @V_{GS} = 10 V$
- Low gate charge (typical 4.6 nC)
- Low Crss (typical 12 pF)
- Fast switching
- Improved dv/dt capability
- Low level gate drive requirments allowing direct operation from logic drives

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
FQT7N10LTF	Full Production	\$0.311	SOT-223	3	TAPE REEL

* 1,000 piece Budgetary Pricing

back to top

Models

Package & leads Condition		Temperature range	Software version	Revision date	
PSPICE					
SOT-223-3	Electrical	25°C	9.2	Apr 29, 2002	

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor